• Account
  • Account
    Inquiries
    0

    Inquired items

    0items total Subtotal:$ 0
  • Cart
    Cart

    Inquired items

    items total Subtotal:$ 0

All Departments

Location: Home > Information Center > Technical FAQs > Protein Technology Column > Why are yeasts used extensively for the functional expressio

Why are yeasts used extensively for the functional expressio

Date: 2020-04-09 Author: Leading Biology Click: 1239

Strains used

Yeasts are common hosts for the production of proteins from recombinant DNA. They offer relatively easy genetic manipulation and rapid growth to high cell densities on inexpensive media. As eukaryotes, they are able to perform protein modifications like glycosylation which are common in eukaryotic cells, but relatively rare in bacteria. Due to this, yeast can produce complex proteins that are identical or very similar to native products from plants or mammals. The first yeast expression platform was based on the baker’s yeast Saccharomyces cerevisiae. However, since then a variety of yeast expression platforms have been studied and are widely used for various applications based on their different characteristics and capabilities. For instance, some of them grow on a wide range of carbon sources and are not restricted to glucose, as it is the case with baker’s yeast. Several of them are also applied to genetic engineering and to the production of foreign proteins.

 

Arxula adeninivorans

Arxula adeninivorans (also called Blastobotrys adeninivorans) is a dimorphic yeast, meaning it grows as a budding yeast up to a temperature of 42 °C, but as a filamentous form at higher temperatures. A. adeninivorans has unusual biochemical characteristics. It can grow on a wide range of substrates and can assimilate nitrate. Strains of A. adeninivorans have been developed that can produce natural plastics, and have been involved in the development of a biosensor for estrogens in environmental samples.

 

Candida boidinii

Candida boidinii is a yeast notable for its ability to grow on methanol (called methylotrophism). Like other methylotrophic species such as Hansenula polymorpha and Pichia pastoris, it is used as a platform for the production of foreign proteins. Yields in a multigram range of a secreted foreign protein have been reported. A computational method, IPRO, recently predicted mutations that experimentally switched the cofactor specificity of Candida boidinii xylose reductase from NADPH to NADH.

 

Ogataea polymorpha

Ogataea polymorpha (synonyms Hansenula polymorpha or Pichia angusta) is another methylotrophic yeast (see Candida boidinii). It can grow on a wide range of other substrates; it is thermo-tolerant and can assimilate nitrate (see also Kluyveromyces lactis). It has been applied to the production of hepatitis B vaccines, insulin and interferon alpha-2a for the treatment of hepatitis C, as well as to a range of technical enzymes.

 

Kluyveromyces lactis

Kluyveromyces lactis is a yeast regularly used for the production of kefir. It can grow on several sugars, most importantly on lactose which is present in milk and whey. It has successfully been applied among others to the production of chymosin (an enzyme that is usually present in the stomach of calves) for the production of cheese. Production takes place in fermenters on a 40,000 L scale.

 

Recently, the D2P system (DNA to Protein), one of cell free protein synthesis system has been developed basing on a genomic engineered K. Latics strain. The D2P system has improved in vitro protein expression efficiency by over 100-fold compared to the original K. Lactis. It also has completely eliminated non-specific glycosylations, increased chaperone activity with improved protein folding and enzyme activities. The D2P system could be used to translate a gene of interest into the protein with milligram-to-gram yield directly from nanograms of DNA template.

 

Pichia pastoris

Pichia pastoris is a methylotrophic yeast (see Candida boidinii and Hansenula polymorpha). It provides an efficient platform for the production of foreign proteins. Platform elements are available as a kit and it is worldwide used in academia for the production of proteins. Strains have been engineered that can produce complex human N-glycan (yeast glycans are similar but not identical to those found in humans.

 

Saccharomyces cerevisiae

Saccharomyces cerevisiae is the traditional baker’s yeast used widely in brewing and baking. Often the collective term “yeast” is used for this single species. As an expression platform, it has successfully been applied to the production of technical enzymes and of pharmaceuticals like insulin and hepatitis B vaccines.

 

Yarrowia lipolytica

Yarrowia lipolytica is a dimorphic yeast (see Arxula adeninivorans) that can grow on a wide range of substrates. As such, it has a high potential for industrial applications but there are no recombinant products commercially available yet.

Online Inquiry

Name
Phone *
E-mail Address *
Service & Products Interested *
Project Description
Verification Code * captcha